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Abstract 
Two unsupervised clustering techniques, hierarchical 

clustering and K-means clustering, have been investigated and 
their performances on classifying the Spitzer Space Telescope 
infrared spectra of stars have been compared. In order to reduce 
the data dimensionality without losing much information, Principle 
Components Analysis was applied to the scaled spectral data prior 
to the classification. The influences of different scaling methods 
have been evaluated as well. The least classification error is 
achieved by the hierarchical clustering technique with the average 
linkage applied to the data set, in which each spectrum is scaled 
by its maximum amplitude. 

1. Introduction 
After their core hydrogen is exhausted via nuclear fusion, 

sun-like stars become very luminous red giants – thousands of 
times brighter than the Sun -- yet may be obscured visually by 
dusty, expanding circumstellar envelopes. The stars’ photospheric 
emission is absorbed by these optically thick and dusty envelopes 
and re-radiated in the mid- and far-infrared range [1]. Hence, 
telescopes equipped with infrared sensors are an effective means to 
study the chemical enrichment of the Milky Way galaxy by the 
dusty envelopes of these mass-losing asymptotic giant branch 
(AGB) stars.  

The Spitzer Space Telescope Infrared Spectrograph (IRS) is 
now providing high-quality infrared spectra with which we can 
investigate mass-losing AGB stars, especially in nearby, external 
galaxies such as the Large Magellanic Cloud (LMC). The LMC is 
an attractive region for study by astronomers because (1) it is our 
nearest neighbor galaxy, only 179,000 light years away; (2) its low 
metallicities and high star formation rates mimic those of far more 
distant, high-redshift galaxies and (3) it contains a large population 
of IR-luminous, mass-losing objects found at essentially the same 
distance, thereby alleviating the distance ambiguities that plague 
studies of mass-losing stars in the solar neighborhood. Therefore 
the IRS spectra of mass-losing AGB stars collected from the LMC 
can be used to establish broad-band photometric indicators of the 
envelope chemistry of mass-losing stars [2].   

In the absence of detailed physical knowledge concerning the 
observed sources, unsupervised spectral clustering provides a path 
to identify the empirical similarities or dissimilarities among the 
sources so that we can begin to group them observationally. Unlike 
supervised clustering based on a training set of labeled data, 
unsupervised clustering seeks natural groupings in the data set 
without predefined target information, except for the number of 

desired classes. The clustering results are thereby completely based 
on the similarities of the observed data. Although many 
unsupervised clustering algorithms have been proposed, most of 
them are based on two popular techniques, K-means clustering and 
hierarchical clustering. K-means clustering is an iterative approach 
to find clusters and their centers such that the within-cluster sums 
of squared distance are minimized.  

Hierarchical clustering is the other popular unsupervised 
classification technique. It expresses the data structure using a tree-
shape diagram, or dendrogram. There are two basic approaches to 
the implementation of hierarchical clustering, agglomerative or 
divisive.  The agglomerative approach sequentially merges 
individuals into groups, while the divisive approach sequentially 
separates individuals into finer groupings [3]. The agglomerative 
approach has been carried out to classify the LMC spectral data set 
because it is more easily implemented in practice. 

To reduce the computational complexity and simplify the 
visualization of the data structure, a multivariate technique, 
Principal Component Analysis (PCA), can be applied to a high 
dimensional spectral data set. PCA transforms a number of related 
variables to a set of uncorrelated variables by applying the Single 
Value Deposition (SVD) technique to the covariance matrix of the 
data set or other similar techniques.  The patterns in the data then 
can be found and the dimensionalities of the data can be reduced 
by means of mapping the high dimensional data into a lower 
dimensional uncorrelated vector space [4]. In the case of spectral 
classification of astronomical objects, given N variables 
(dimensions) for each spectrum of a set of  objects, M (M <= N) 
new uncorrelated vectors (dimensions) can be constructed via 
PCA, such that each of their corresponding eigenvalues accounts 
for as much of the variance of the entire data set as possible. Then 
the projection of the spectral data set into the new uncorrelated 
vector space yields the underlying patterns of spectra. 

Spectral classification algorithms are affected by factors such 
as how the spectral data set is scaled and how the similarity 
between clusters is measured. In this paper, we applied the above 
two unsupervised clustering algorithms with different 
combinations of factors to the LMC Spitzer spectral data set and 
evaluated their performances by comparing the classification 
results with the ground truth, which has been determined by 
Buchanan [2] and is available at http://www.cis.rit.edu/~clbsps/. 
Congalton [5] stressed that the Confusion Matrix, in which each 
row corresponds to the instances in actual classes while each 
column corresponds to the instances in theoretical classes, is a 
useful tool to assess the classifiers performance. Through the 
classifiers assessment, an optimum unsupervised clustering 



 

 

approach for the LMC spectral data set can be found and applied 
to additional Spitzer space telescope infrared spectral data. 

We describe the LMC spectral data set and the clustering 
procedure in section 2; section 3 is devoted to the performance 
comparison of the unsupervised classification algorithms and the 
discussion of classification results. The final section contains a 
summary. 

2. Data and Experiment 
A raw spectral data set, including 60 infrared spectra of the 

IR-luminous stars in LMC region, was obtained by the Spitzer IRS 
and processed using the Spitzer pipeline version S11.0 (see [2] for 
details). The clean spectral data set then was extracted by 
removing the sky background from the source spectra and made 
available as the Spitzer IRS Spectral Atlas of Luminous IR 
Sources in the LMC [2]. We carefully examined the spectral data 
set and selected 53 unambiguous spectra from the raw data set as 
our samples. In the selected spectral data set, two artifacts were 
corrected to facilitate further classification. The first artifact is that 
each spectrum has a different wavelength range. The other is the 
presence of overlapping sample values from 7.5 µm to 9 µm and 
from 20 µm to 22 µm. Thus, with the exception of two objects 
lacking short wavelength (5-14 µm) data (MSXLMC1072 and 
MSXLMC1524) all spectra were resampled onto the identical 
wavelength range, from 5.3382 µm to 33.097 µm with a single flux 
density value sampling at each wavelength interval. Although 
these two outliers cannot be classified, we still put them into an 
“Oddball” class (see below) to make the classification results easy 
to be compared with the ground truth. Thus the final data set 
consists of 53 samples including MSXLMC1072 and 
MSXLMC1524. It should be noted that all the source names in our 
data set come from Infrared Astronomical Satellite (IRAS) and 
Midcourse Space Experiment (MSX) catalogues. 

Because different potential spectral scaling methods will 
undoubtedly have influence on our clustering results, it is essential 
to investigate them -- although consideration of the scaling method 
is often neglected in the classifier design. Three standard scaling 
methods were employed in our experiments: 1) scale each 
spectrum according to its mean and standard deviation to produce 
a new spectrum with zero mean; 2) scale each spectrum by its 
maximum amplitude, to compress its amplitude into the range [0 
1]; 3) scale each spectrum by its area, so that all scaled spectral 
areas are identical. The scaled spectral data set and the original 
data set are plotted in Fig.1. 

We can discern the typical features from the scaled spectra in 
Fig.2. These features reveal the chemistry of the circumstellar dust 
of the mass-losing evolved stars [2]. Spectra with a broad SiC dust 
emission peak at 11.5 µm and narrow acetylene (C2H2) absorption 
peak at 13.7 µm are characteristic of stars surrounded by Carbon-
rich ejecta. Spectra with silicate dust emission peaks at 9.7 µm and 
18 µm indicate that the stars have Oxygen-rich ejecta. Spectra with 
very red continua and narrow emission lines imply that the 
corresponding stars are young, luminous, and embedded in star-
forming clouds. These objects are designated in [2] as “Red 
Objects” based on infrared color-color diagrams.  The other 
sources, such as MSXLMC1072, MSXLMC1524, MSXLMC890, 
MSXLMC1326 and IRAS04553-6825 were put into an additional 
class (“Oddballs”): MSXLMC1072 and MSXLMC1524 have such 
a short wavelength range that they can not be classified; 

MSXLMC890 and MSXLMC1326 are B[e] hypergiants [6], which 
are young, massive stars and not red giants; IRAS04553-6825 is 
probably a highly obscured and luminous supergiant. 
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(b) 

 
(c) 

 
(d) 

Figure 1.  Spectra data, (a). original,  (b). each of them is scaled according 

to its mean and standard deviation,  (c). each of them is scaled by its 

maximum amplitude,  (d). each of them is scaled by its area. 

 
Figure 2. The typical spectrum of O-rich stars (MSXLMC141), C-rich stars 

(MSXLMC87), Red Objects (MSXLMC22) and “Oddballs” (IRAS04553-6825). 

Each spectrum is scaled by its maximum amplitude. 

The PCA method was then applied to the scaled spectra to 
reduce their dimensionalities. In this case, the first three Principal 
Components (PC) can express 95%, 97%, and 98% of the total 
variance using spectral scaling methods 1, 2, and 3, respectively. 
So the scaled spectral data sets can be projected onto the 3D space 
formed by the first three PCs without losing much information. 
This reduction in dimensionality results in a large gain in 
classification computational efficiency, which would be a great 
benefit in the case of a very large data set.  

To use agglomerative hierarchical classification, we first need 
to find the similarities (Euclidean distance) between every pair of 
spectra in the data set. Then the spectra can be grouped into a 
hierarchical tree based on the proximity (Euclidean distance) 
between every pairs of objects. Single linkage, complete linkage 
and average linkage are three standard grouping methods. 



 

 

Complete linkage, also called furthest neighbor, uses the largest 
distance between two clusters while average linkage uses the 
average distance [3]. These two linkage methods were employed in 
our experiment. Finally, the clusters can be chosen at a given 
hierarchical level. According to the classification results in [2], 
which are based on color-color diagrams, the recommended 
number of classes should be four and the clusters should be found 
at that hierarchical level. 

The performance of another unsupervised clustering 
technique, K-means, has been investigated as well. Unlike 
hierarchical clustering, K-means clustering requires the initial 
cluster centers and the number of classes as the input parameters. 
The number of classes was fixed at four and the start points we 
chose are MSXLMC22, MSXLMC87, MSXLMC775 and 
IRAS04553-6825, which represent the typical features of each of 
the four clusters. Then the samples were labeled according to the 
nearest cluster centers.  We iteratively computed the new centers 
and classified the samples until the centers could not be updated. 
At this point we have the final clusters and their respective centers. 

Table 1. The confusion matrix of hierarchical clustering using 
average linkage with PCA on the scaled spectra by the maximum 
amplitude 

Ground Truth  
C-rich O-rich Red Odd Total 

C-rich 14 6 0 0 20 

O-rich 0 16 0 1 17 

Red 0 0 11 0 11 A
ct

ua
l 

cl
us

te
rs

 

Odd 1 0 0 4 5 

 Total 15 22 11 5 53 

Note: Red refers to Red Objects and Odd refers to Oddballs. 

The assessment of each clustering approach has been 
performed by comparing the classification results with the ground 
truth.  The comparison results were tabulated in the confusion 
matrix; for example, Table 1 is the confusion matrix of the 
hierarchical clustering method using average linkage with PCA on 
the data scaled by the maximum amplitude. The overall 
classification accuracy can be approximated by the confusion 
matrix trace divided by the total number of spectral samples. The 
overall classification error is roughly the complement of the 
overall classification accuracy. For example, the overall 
classification accuracy reflected in Table 1 is about 84.9% and the 
overall classification error is about 15.1%. 

3. Results and Discussion 
As seen in Table 1, the hierarchical clustering algorithm using 

average linkage partitioned the Red Objects from the others 
without errors because their spectral patterns are very different 
from the other categories. If we interpret these differences in the 
color sense, the Red Objects are the most “reddish” (emission at 
long IR wavelength) while the C-rich stars are the most bluish 
(emission at short IR wavelength). The infrared ‘color’ of the O-
rich stars resembles cyan, because their spectra have two peaks at 
short and middle IRS wavelengths, respectively. The stars 
belonging to the Oddball class have an emission peak at ~11.5 µm 

(in the short IR wavelength region) and a flat response over the 
long IR wavelength in their spectra. Thus the Red Objects are 
independent of the other three categories and can be easily 
separated from the others. Conversely, IRAS05568-6753 is a C-
rich star but was wrongly classified into Oddball because its 
spectrum not only has C-rich-star features but also has emission in 
the long IRS wavelength region. In other words, these two 
categories are not independent from each other. Similarly, six O-
rich stars in the ground truth were wrongly classified as C-rich 
stars by our method. One reason is that the C-rich stars and O-rich 
stars have a common pattern, in that both have emission in the IRS 
short wavelength region, although the peaks are not at the same 
position. The other reason is that the 18-µm-emission peak of these 
O-rich stars -- the spectral region where there is the most 
difference between O-rich stars and C-rich stars -- is so weak that 
the classifier considers it as a small fluctuation, as shown in Fig.2. 
Consequently, most LMC spectra classification errors were 
produced due to the interdependency among the C-rich, O-rich and 
Oddball categories. 

Linkage methods are important to the hierarchical clustering.  
It was proved in [7] and [8] that complete linkage clustering is less 
sensitive to sources of noise than single linkage clustering, which 
is also called the nearest neighbor clustering. It was also 
demonstrated in [9] that average linkage clustering outperforms 
the other grouping methods. We compared the classification 
accuracy of two linkage methods (Table 2) and confirmed that 
average linkage is the best grouping method. Consequently, it 
should be the first choice when we consider the linkage options to 
group the infrared spectra. 

Table 2 shows that the various scaling methods have a great 
effect on overall classification accuracy; a good scaling method 
can improve the classification performance while a bad one always 
degrades the classification. Fig.3 illustrates that the different 
scaling methods can change the distance between the objects so as 
to affect the similarities between the groups and eventually 
influence the classification results. For instance, Fig.3 (a) and (b) 
show that the Oddball class is mixed with the other classes using 
scaling method 2 but it is well separated with the other classes 
employing scaling method 1. However, the selection of scaling 
method has to be determined through experiments. In the case of 
our LMC Spitzer IRS spectral hierarchical clustering, scaling 
method 2 is superior to the others for either linkage method 
because it produced the best overall classification accuracy. On the 
other hand, Table 2 also shows that scaling method 3 led to the 
best K-means classification result (Fig.3 (d)).  

The greatest advantage of PCA is that only a fewer PCs can 
faithfully represent the data with many dimensions. In our 
experiment, we reduced the data dimensions from 375 to 3 and 
only the first three PCs were employed in the procedure. But the 
space formed by the first three PCs may not be the optimum 
subspace for classification algorithms to classify the clusters. For 
instance, the use of the first three PCs degraded the overall 
classification accuracy of the hierarchical clustering methods as 
shown in Table 2. The optimum subspace can be found via 
Multiple Discriminant Analysis [10].  

Table 2 demonstrates that the best overall classification 
accuracy of the hierarchical clustering algorithm, 86.8%, has been 
achieved under the condition of applying average linkage on the 
spectra scaled by the maximum amplitude. Meanwhile, the best 



 

 

overall classification accuracy using the K-means algorithm is 
81.1%, lower than the hierarchical algorithm. We caution that this 
comparison only applies to the LMC Spitzer IRS data set studied 
here. Compared to the hierarchical algorithm, the drawback of the 
K-means algorithm is that it requires the start points, as well as the 
number of classes, as its initial parameters. In our experiment, the 
selection of start points had a large effect on the final clustering 
result, because of the small size of our test data set. As the number 
of samples becomes increasingly larger, sufficient iterations of the 
K-means algorithm would eliminate the artifacts caused by start 
points. 

Table 2. The performance comparison of unsupervised 
clustering algorithms. 

Unsupervised Clustering Methods Overall 
clustering 
accuracy 

Scaled data 1 73.6% 
Scaled data 2 84.9% 

Average 
Linkage 

Scaled data 3 67.9% 
Scaled data 1 64.2% 
Scaled data 2 79.2% 

Hierarchic 
clustering 

Complete 
Linkage 

Scaled data 3 75.5% 
Scaled data 1 77.4% 
Scaled data 2 71.7% 

P
C

A
 

K-means  

Scaled data 3 81.1% 
Scaled data 1 81.1% 
Scaled data 2 86.8% 

Average 
Linkage 

Scaled data 3 75.5% 
Scaled data 1 71.7% 
Scaled data 2 83.0% 

Hierarchic 
clustering 

Complete 
Linkage 

Scaled data 3 83.0% 
Scaled data 1 77.4% 
Scaled data 2 71.7% 

W
ith

ou
t P

C
A

 

K-means  

Scaled data 3 81.1% 
Note: Scaled data 1, 2 and 3 represent the spectral data set scaled by 

scaling method 1, 2, and 3, respectively. 

4. Conclusion 
Hierarchical clustering and K-means clustering were 

implemented to classify our test data set of Spitzer IRS spectra of 
LMC infrared sources. The effects of some factors, such as linkage 
method, data rescaling and PCA have been investigated. The best 
overall classification accuracy, 86.8% (or the least classification 
error, 13.2%) has been achieved by the hierarchical clustering 
algorithm with the combination of average linkage and the data 
scaled according to maximum amplitude. PCA was used to reduce 
the dimensionalities of LMC spectra. The first three PCs, 
accounting for more than 95% of total variance, were employed 
for hierarchical clustering and K-means clustering. The cost of the 
use of the first three PCs is that it decreased the overall 
classification accuracy of hierarchical clustering algorithms in our 
experiment.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Classification results: (a). average linkage + scaling method 1;  (b). 

average linkage + scaling method 2; (c). complete linkage + scaling method 

2; (d). K-means + scaling method 3. Note: ‘ x ’ refers to C-rich stars; ‘ o ’ 

refers to O-rich stars;   ‘ * ’ refers to Red Objects; ‘ + ’  refers to Oddballs.  
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